Scarce Data based Credit Risk Assessment: Evaluating Missing Data Methods in PD-estimation by Logistic Regression

Lese und höre 30 Tage gratis!

Scarce Data based Credit Risk Assessment: Evaluating Missing Data Methods in PD-estimation by Logistic Regression

Ab 9,99 €/Monat nach dem Testzeitraum. Jederzeit kĂŒndbar.

Scarce Data based Credit Risk Assessment: Evaluating Missing Data Methods in PD-estimation by Logistic Regression

Lese und höre 30 Tage gratis!

Lehne dich mit der App von Nextory zurĂŒck und finde deine nĂ€chste Geschichte unter Hundertausenden von Hör- und E-BĂŒchern.

Ab 9,99 €/Monat nach dem Testzeitraum. Jederzeit kĂŒndbar.





Scarce Data based Credit Risk Assessment: Evaluating Missing Data Methods in PD-estimation by Logistic Regression

By employing statistical methods in credit risk assessment, banks seek to maximize the degree of insight data hold about the nature and quantity of risk inherent in potential and actual credit transactions. Non-available records, i.e., missing data, erode the extent of databases and thus the precision and reliability of statistical models banks use in order to draw conclusions in regard to their credit risk. Statistics holds a wide spectrum of techniques, so called missing data methods, in order to mitigate the damaging effect of these occurrences on models constructed for deriving statistical inferences. Bernd Galler evaluates the benefit of these methods in terms of enhancing credit risk assessment. He assesses their influence on state of the art credit risk models appropriate for estimating the Basel II risk parameter probability of default (PD) by investigating the effected model properties and outputs specific to certain missing data methods. The author covers a wide spectrum of techniques, reaching from straightforward approaches, such as deleting records, to more elaborate ones, e.g., featuring imputation values derived from simulated multivariate probability distributions. He examines the effects of these procedures in different circumstances, such as varying ratios of missing data. Bernd Galler's results indicate that the examined methods differ clearly—which makes the book at hand informative reading for both scientists as well as bank practitioners.

Scarce Data based Credit Risk Assessment: Evaluating Missing Data Methods in PD-estimation by Logistic Regression ist als e-Book verfĂŒgbar.

  • E-Book

    Erscheinungsdatum : 2015-01-28

    Sprache: Englisch

    Verlag E-Book: Tectum Wissenschaftsverlag

    ISBN E-Book: 9783828861596

Mehr lesen

Was anderen an Nextory gefÀllt

Einfach super, wenn ich im Auto, Flugzeug oder Zug ein gutes Buch hören kann.

AnitaAnita

Leicht lesbar, perfekt, dass sich Hintergrundfarbe und SchriftgrĂ¶ĂŸe einstellen lassen.

PeterPeter

Schneller und netter Kundenservice, gute Auswahl und ansprechende BenutzeroberflÀche. Die App wird stÀndig weiterentwickelt.

AnnaAnna
img

Zigtausende Geschichten

Lies und höre, so viel du magst. Du entscheidest, wenn du dein Abo beenden oder wechseln möchtest.

image

BĂŒcher lesen macht Spaß

Im App Store und bei Google Play wurde Nextory von ĂŒber 11 000 Lesern mit 5 Sternen bewertet.

image

Deine eigene BĂŒcher-Challenge

Setze dir bestimmte Lese-Ziele und verfolge deine eigene Lesestatistik mit den Funktionen BĂŒcher-Challenge und Lesetagebuch.

visa
amex
master